
On exact solutions of nonlinear integrable equations via integral linearising transforms and

generalised Backlund-Darboux transformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 3761

(http://iopscience.iop.org/0305-4470/23/16/023)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 3761-3768. Printed in the UK 

On exact solutions of nonlinear integrable equations via 
integral linearising transforms and generalised 
Backlund-Darboux transformations 

B G Konopelchenkoi 
University of Paderborn, 4790 Paderborn, Federal Republic of Germany 

Received 6 March 1990 

Abstract. A new approach for the constructing the exact solutions of nonlinear equations 
via integral transforms which convert them into their linear limits is discussed. Generalised 
Backlund-Darboux transformations are introduced. 

Nonlinear evolution equations integrable by the inverse spectral transform (IST) method 
form a broad class of partial differential equations for which one is able to construct 
the infinite sets of the explicit exact solutions (exactons) of different types [l-41. Most 
of the methods of constructing such exact solutions (i.e. solitons, lumps, instantons, 
boomerons, dromions etc) are based on the use of certain auxiliary linear equations 
[ 1-41. Wide classes of exactons can also be constructed by the Backlund and Darboux 
transformations [ M I .  

In the present paper we propose a new approach for constructing the exact solutions 
of nonlinear equations which is a version of the general linearisation idea and based 
on the reinterpretation of the known formulae from the IST method. The key point is 
the fact that the Fourier transforms s of the inverse problem data, which are the certain 
integral transforms of the potentials q, obey the linear limits of the initial nonlinear 
evolution equations. The exact solutions of these linear equations can be easily found 
by the linear Backlund or Darboux transformations. Then the solutions q of the 
nonlinear evolution equations are constructed by the usual or generalised Darboux 
transformations. 

The main problem of this approach is the existence of the appropriate linearising 
integral transform. For known soliton equations the existence of such transforms is 
connected with the existence of the standard for the IST method auxiliary linear systems, 

Here we will consider two nonlinear integrable equations, namely the nonlinear 
Schrodinger (NLS) equation and the Davey-Stewartson (DS) equation, as the 
illustration. 

The NLS equation without reduction looks like [ 1-41: 

iq, + qxx + 2qrq = 0 

ir,-rx.-2qrr=0. 

t Permanent address: Institute of Nuclear Physics, Novosibirsk-90, 630090, USSR. 
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The NLS equation itself, iq, + q,,. + 2\qI2q = 0, arises as the reduction r = 4 of the system 
(1). The system (1) is equivalent to the compatibility condition of the auxiliary linear 
system [l, 21 

( -u3ar + P + ih )+ = 0 
(ia, + 2u3a: - 2 ~ 8 ,  - P, + qra3)+ = O 

where P = @), u3 = (0'2,) and + is the 2 x 2 matrix. The inverse problem data for (2) 
(in fact, part of them) are defined by the expressions [l, 21 

+m 

SI2(A, t )  = [ dx e-2iAx d x ,  t)x,(x, t ;  A )  
-02 

+m (3 1 
SZ1(A, t )  = dx elihx r(x, t)Xll(X, t, A )  I-.. 

where x+ = +" and +*(x, t, A )  are the fundamental matrix solutions of the system 
(2) with the asymptotics +*(x, t ,  A )  +x.+im exp(iha3x). The quantities SI, and S21 obey 
the linear evolution equations [ 1,2] 

ia,SI2-4A2Sl2 = 0 ia,S2, +4h2S21 = 0. (4) 
Now let us introduce their Fourier transforms 

S(x, t )=-L [ dh e2iAxS,2(h, t )  
+a3 

9.r -0.2 

q b ' ,  t)X22(Xf, t ,  A )  =' dxf dh ei2A((x-x') 

-m -m 

( 5 )  

t02 

r(x', t)Xll(X', t, A ) .  =-[ 1 dx'[-- dh e-i2A(x-x') 

57 -02 

The functions S(x, t )  and T ( x ,  t )  obey the linear equations 

is ,  + S,., = 0 i T, - T,, = 0. (6) 
which obviously coincide with the linear limit of equations (1). We emphasise that 
equations (6) can be derived directly from the definitions ( 5 )  with the use of the 
nonlinear system (1) and auxiliary linear system (2). 

The standard reconstruction formula, for instance for q, written in terms of S is of 
the form [ 1,2] 

q(x, t )  = L  [ + m  dx' [:: dh e2iA(x-x')S(x', t)XYl(x, t ;  A )  (7) 

so any solution of the system (6) gives rise to the corresponding solution q, r of the 
nonlinear system (1). 

Now let us inverse this procedure. Let us introduce the functions S and T given 
by the ansatz ( 5 )  (or (7)), where A is a parameter and + is some matrix function to 
the nonlinear system (1). Further, we demand that these functions S and T should 
obey the linear equations (6). Then it is not difficult to check that one achieves this 
goal if the function I) obeys the linear system (2). So, we arrive at the auxiliary spectral 
problem for equation (1). A crucial point for the applicability of such approach is, of 
course, the choice of the correct ansatz ( 5 ) .  

7 -m 
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The general solutions of equations ( 6 )  are, of course, the superpositions of the 
plane waves. We restrict ourselves by the discrete superpositions 

k = l  

n 

~ ( x ,  t )  = Bk exp(4ipit -2ipkx). 
k = l  

where h k ,  p k ,  Ak and Bk are arbitrary complex constants. 
Let us introduce the following linear Backlund transformations ( BTS) 

Using such elementary BTS, one can represents the solutions (8) as 
n m 

S =  B$So T =  lJ Bf lTo  
k = l  k = l  

where So = To = 0 are the trivial solutions of equations ( 6 ) .  
It follows from the formulae ( 5 )  that the action of the elementary BT B:? is equivalent 

to adding the pole at the point h k  for the quantity S,,,,(h, t ) .  Similarity the action of 
BFL adds the pole at p k  for S(21) (A ,  t ) .  This indicates that the transformations (9) and 
(10) are nothing but the elementary BTS introduced earlier in [93. Indeed, using the 
definitions ( 5 )  and the linear problem (2), one can show that the actions of the 
elementary BTS B(' ' (9)  and B'2'( 10) are equivalent to the following gauge (Darboux) 
transformations 

(12) 

I i = l , 2  (13) 

4 ~ 8(1,2)  +! = D(l,2)+ 

j-;D'1.2'= D".2'j-. 
and 

where 

@=( 0 0  ) + B  
: ) + A  0 ax 

and A and B are certain functions on P and P' (see [lo]). In [lo] it has been shown 
that the gauge transformations (U)-( 14) give rise t o  the elementary BTS introduced 
in [9] .  

~~ 

A very simple nonlinear superposition formula (in terms of q and r )  corresponds 
to the elementary BTS [9].  This allows us to construct explicitly the infinite lattice of 
solutions P,,, = rIE=l BY$ rIr=L B'2 * Po where Po = (E:) of the system ( 1 )  [ 9 ] .  Note that 
in the case r = 4 one has T = S, SoBj;?,' = &'d and hence only the simultaneous action 
of BiY and B i t  is  admitted. 

We see that the action of the elementary BTS B(" and B'*' is of the extremely simple 
form in terms of the variables S and T. The possibility to convert them into explicit 
Backlund-Darboux (BD) transformations (12)-( 14) is again connected with the 
existence of the adequate integral linearising transform ( 5 ) ,  (7). 
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Note that one can consider also the other base in the manifolds of solutions of 
equations (6). The elementary BTS can be defined, similar to (9), (10) as the additions 
of the elements of the basis. A problem is to convert them into the more or less explicit 
forms in terms of q and r. 

In conclusion, we attract attention to the fact that the integral linearising transforms 
( 5 ) ,  (7) can be rewritten in the more compact and transparent form 

where 

cp(x, t ;  z )  =L J dA e2iAzx-(x, t, A ) .  
-m 

The function cp obeys the following linear multidimensional system of equations 

(18) 
% - 8 ( + 3 ,  %]-u3P(x, t ) c p = O  

icPt + ~ U ~ P X X  - 2U3PxP3 - ~ ~ ( P z z  - 2Pqx - & P 3  + (qru3 - PX )cP = 0. 

We emphasise that the porential P in (18) does not depend on the axuiliary variable 
2. The compatibility condition for the system (18) is, of course, equivalent to the NLS 

system (1). 
The Davey-Stewartson (DS-I) equation with the non-trivial boundaries and under 

the reduction r = i j  looks like (see e.g. [ll-131): 

where the boundary values U1 and U, are arbitrary functions. The DS equation is the 
compatibility condition for the system 

where V is the 2 x 2 matrix which depends on q and boundaries U1, U, [ll-131. The 
Fourier transform of the inverse problem data defined as [ 11-13] 

~ ( 5 ~ 7 ,  t )  =: 

q(5, 7, t>  = J-j-- d7 '  dA S(5,7', t)xY1(5', 7, t ;  A )  eiA(T-7'). 

d t '  dA q ( t ' ,  7, ~ x ; ~ ( t ' ,  7, t ;  A )  eiA(*-*') (21) 

where x- = II, exp(iA(i' '$) is the solution of the linear integral equation corresponding 
to (20). The reconstruction formula for q is of the form 

(22) 

The quantitity S(5, 7, t )  obeys the linear equation [ll-131 

iSt+S5*+So,,+(U1(7, t ) +  w5, t ) ) S = O .  (23) 
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Equation (23) admits the separation of variables and S can be represented in the form 

where pnm E C and 

The corresponding solutions of the DS-I equation are also representable in the beautiful 
compact form [ 131 

where Z = p ( l + p p p + a ) - ' ,  (P)nk=Pnk, (P+)nk=Pkn and 
e 

a n k ( 6 ,  t ) *  d5' x n ( 6 ' ?  t )Xk( [ ' ,  t ) ,  P n k h ,  t ,  = dT'yn(T'9 t )  Yk(T', (27) L 1-1 
So each pair of the explicitly solvable linear equations (25) gives rise to the explicit 

solution of the DS-I equation. Note that the formula similar to (26) can be derived also 
for the case of non-decreasing q with the use of the corresponding general non-local 
Riemann-Hilbert or non-local &problems. 

In the simplest case U1 = U, = 0 the solutions X ,  and Y, of equations (25) can be 
chosen as the plane waves 

x, = exp( -4ih.2, f + 2ihkt) Y, = exp(4ip.2, t + 2ipk7) (28) 
where hk and p k  are arbitrary complex constants. In this case the solution (24) can 
be represented as follows 

where So= 0 and BT B;A(&yLm) acts as 

(30) 
On the submanifold of degenerate solutions (prim = anbm) BT B:A(&n;L) can be represen- 
ted as the tensor product of the two more elementary B T ~ :  

B(l)(P 1 
nm(Atyibm) ' s s + p n m x n ( &  t ,  y m ( T ,  t ) -  

(31) ~ ( 1 ) ( "  b 1 ~ ( 1 ) +  
nm(At ,E , , )  = n ( A n ) @ B E i i n , )  

where 

This fine structure of the elementary BTS is an important feature of the (2+ 1)- 
dimensional case. 

Indeed these BTS are more elementary than those constructed in [14]. Using (29), 
it is not difficult to see that BT B;" ,  introduced in [14], is 
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where llZ2-,means the continual product. This BT By: (together with the similar 
BT B f ; )  generates the lattice of solutions, constructed in [ 141, which is the submanifold 
of solutions (26). 

Then considering the BT B“) with both continual parameters and degenerate func- 
tions p of the Gaussian type, one can construct the gausson type solutions of the DS-I 

equation, firstly found by the different approach in [ 151 (see also [ 161). 
An interesting solution of the DS-I equation with the Gaussian localisation of the 

different type arises in the case U ,  = -a2 ( ( -  u, t ) ’ ,  U, = -a2(v  - U,?)’ where ul and 
21, are constants. The corresponding functions X ,  and Yn are the well known 
eigenfunctions of the stationary states for the moving one-dimensional harmonic 
oscillator, (see e.g. [ 171): 

x exp[-a2(t - ~1 t ) ’ ] H n ( J Z ( ( -  t )  (33) 

where H, are the Hermitian polynomials. The functions Yn are also given by (33) with 
the substitution (+ 7. Formula (26) gives 

s ( t ,  5, t )  = ~ ( 6 ,  T ,  t )  exp[-a2((t-  u l t ) ’ + ( ~  - W > ~ ) I  (34) 

where Z is calculated by the formulae (26) and (27). Let us note that in this case we 
have, at t + 00, increasing moduli 1 Ul\ and U21 of boundaries U1 and U,. 

This exacton can be driven by changing the boundaries similar to the dromions 
[ 131. But, in contrast to dromions, the exacton (34) does not radiate energy if its motion 
is not uniform. 

Now let us consider the dromion solutions of the DS-I equations [12,13,18]. They 
correspond to the reflectionless potentials U1 and U,. As known, the reflectionless 
potentials and corresponding eigenfunctions can be constructed by the Darboux 
transformation (DT) [8]. So, if one defines the elementary DTS by the formulae 

x + X ’  = (a, - (log X , ) , ) X  
U, + U ;  = U, + 2(log X , ) ,  

Y + Y’= (a, -(log Yl),)  Y 
U1 += U ;  = U,  + 2(log Yl),, 

0:: { 
0;: 

(35) 

where XI and Yl are some solutions of equations (25), then the general degenerate 
solution (24) (p,,,, = a,&) can he represented in the form 

where So = X o  * Yo and X o  and Yo are the solutions of equations (25) with U,  = U, = 0. 
So, the dromions with the different ( N ,  M )  are connected to each other by the 

elementary DTS (35) and (36). Using formulae (20)-(22), one can, in principle, find 
the action of the elementary DTS on the initial variables $ and q. These transformations 
are the Darboux-Backlund transformations of a new type since they change also the 
boundaries. 

Using the known results for the DTS [8], one is also able to construct rational, 
finite-gap and other types of solutions for the system (25) and correspondingly for the 
DS-I equation. 
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We emphasise that the linearising transform (21), (22) again plays a key role in all 
the constructions discussed. Similar to the NLS equation the formulae (21) and (22) 
can be rewritten in a compact form 

+X 

d 5 ,  7, t ) =  drl'S(5', 77, t ) c p I l ( t ' ,  7, t, 77-70 (39) 

where ( ~ ( 5 ,  7, t ;  z ) = ( l / ~ ) j + z d A  '"x-(5, 7, t ;  A ) .  
This function cp obeys the following multidimensional linear equation 

plus the corresponding equation with cp,. 
A similar situation takes place for the other soliton equations. For instance, for the 

Korteweg-de Vries equation U, + U,,, + 6 UU, = 0 [ 1-41 the linearising integral trans- 
form looks like 

dx'  S(X', t)cp(x, t ;  x -x'). (41 1 

Now S, + SxXx = 0 and cp(x, t ;  z )  obeys the linear system of equations 

cpxx - 2% + U(X, t)cp = 0 

cpf + 49,,, - 12cpXXZ + 12cp,,, + 6 U(cpx - 9,) + 3 uxcp = 0. 

For all soliton equations the integral linearising transforms have a form similar to ( 1 9 ,  
(16), (38), (39), (41) and the function cp obeys the linear multidimensional systems 
with the potential which is independent on the auxiliary variable 2. This appears as 
the general form of their ansatz for the linearising transform. 

So, the approach under discussion can be formulated as follows. For a given 
nonlinear equation, introduce the appropriate integral transform (of the type (1  5 ) ,  
(16), (38), (39), (41)) which would allow us to convert it into the linear equation for 
S and find the corresponding system of equations for cp. In fortuitous cases this system 
will be the linear one (or, at least, solvable) and one will be able to convert the solutions 
of the linear equation for S into the solutions of the nonlinear equation for U. 

Of course, for solition equations this scheme is equivalent to many previously 
proposed approaches. Nevertheless it is of interest since it may give us solvable 
nonlinear equations of a new type. 
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